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Main Contributions

« ReED framework representing at least 15 different KGRL methods * Relation-Aware Message Passing Encoder (RAMP Encoder) « The generalization bounds for ReED with the TD decoder and SM decoder

« RAMP encoder in ReED is a comprehensive neural encoder for KGRL * Aggregating representations of the neighboring entities and relations Theorem 4.4 & 4.5 Forany L = 0, let £,:V x R X V — R? be a triplet classifier designed by the
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explain actual generalization errors on three real-world KGs

* Using the entity and relation representations, compute scores of triplets
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» Distance between h and t after a relation-specific translation is carried out matrices, d is the maximum dimension, and s is the maximum Frobenius norm of the learnable matrices
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compute a score for each triplet N A . » Practical implications that can guide the desirable designs of KGRL
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Experimental Results

* Generalization Error
* Difference between the losses computed on the full set and a training set

* Generalization Bound . Empirical Loss of Triplet Classifier £, : Measured on a training triplet set & ~ * Measure the generalization errors on real-world knowledge graphs

 Theoretical upper bound of the generalization error 1 Varying the aggregator:  Varying the norm Varying the number  Varying the maximum
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_ _ _ Conclusion
Transductive PAC-Bayesian Generalization Bounds Prior & Posterior Unroll two-step recursions | Architecture of the -
_ y Distributions on the considering interactions RAMP Encoder * Anovel ReED framework expressing at least 15 KGRL methods
* Probably Approximately Correct (PAC) Theory Hypothesis Space between entities and relations J . . » The first PAC-Bayesian generalization bounds for ReED with two
- Fundamental tools for analyzing the generalization bounds L ¢ et ¥ .
. . y J J Assume the Gaussian distributions Perturbation Bound for ReED with TD different types of decoders: TD decoder and SM decoder
+ PAC-Bayesian Generalization Bounds with the same standard deviation of ReED Covering Ball Analysis » Provide theoretical grounds for commonly used tricks in KGRL
« Based on the difference between the prior and posterior distributions Transductive PAC-Bayesian ¥ 5 . o . . o _
- Transductive PAC-Bayesian Generalization Bounds Generalization Bounds for Calc_ulate the » Generalizatio.n Bound * Empirically show the relationship between the critical factors in
» Training triplets are sampled without replacement from the finite full set a Deterministic Classifier KL-divergence for ReED with S the theoretical bounds and the actual generalization errors
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