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l 01 Knowledge Graph (KG)

« Represent real-world knowledge by modeling relationships between entities
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l 01 Inductive Knowledge Graph Completion (KGC)

 Predict missing triplets with knowledge graphs

« KG that appears during inference differs from the one used for training
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l 01 Theoretical Properties

Stability

« Consistency of the model’'s output

« Measured by Lipschitz constant

Domain Range
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Generalization
Capability

» Performance discrepancy between
training and test data

« Measured by generalization bound
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l 02 General Framework for Subgraph Reasoning Model

« Determine the validity of a triplet using the subgraph extracted around the triplet
« Extract a subgraph associated with a target triplet
* Relabel the entities within the subgraph

« Compute a score of the subgraph through message-passing

‘ Final score
fw(S)

Subgraph Subgraph
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l 02 Subgraph Message Passing Neural Network (SMPNN)

« Compute a score of the subgraph through message-passing

x 2 (v) = INITg
MP @) = (6P (2w, x{ VW), q) | (rw) € M)}

xP(v) = UPD® ( D)), AGGW (MS(” (v)))
f(8) = RD (2 (n), x (1), GRD ({a$"” () u € Vs}}), q)
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l 02 Subgraph Message Passing Neural Network (SMPNN)

* Initialize embedding vectors using embedding vectors from INIT,

x 2 (v) = INITg
MP @) = ({MS6P (2P, x{ VW), r,q) | (r,uw) € M)}

xP(v) = UPD® ( D)), AGGW (MS(” (v)))
f(8) = RD (2 (n), x (1), GRD ({a$"” () u € Vs}}), q)
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l 02 Subgraph Message Passing Neural Network (SMPNN)

« Compute messages of all neighbors for each node

x 2 (v) = INITg
MPw) = (MSG® (x§l‘”(u),x§l‘”(v),r,q) | (r,u) € Ns(v)}}

xP(v) = UPD® ( D)), AGGW (MS(” (v)))
f(8) = RD (2 (n), x (1), GRD ({a$"” () u € Vs}}), q)
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l 02 Subgraph Message Passing Neural Network (SMPNN)

» Update embedding vectors by aggregating messages of neighbors

x 2 (v) = INITg
MP @) = (6P (2w, x{ VW), q) | (r,u) € M)}

*P(v) = upD® < g‘”)) (v), AGGW (MS(” (v)))

f(8) = RD (2 (n), x (1), GRD ({a$"” () u € Vs}}), q)
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l 02 Subgraph Message Passing Neural Network (SMPNN)

« Update embedding vectors by aggregating messages of neighbors

x 2 (v) = INITg
MP @) = ({MS6O (2P, x{ VW), q) | (r,w) € M)}

*P(v) = upD® ( g‘“”) (v), AGGW (MS(” (v)))

f(8) = RD (2 (n), x (1), GRD ({a$"” () u € Vs}}), q)
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l 02 Subgraph Message Passing Neural Network (SMPNN)

« Compute the final score using readout and global-readout functions

x 2 (v) = INITg
MP @) = (6P (2w, x{ VW), q) | (rw) € M)}

*P () = uppW® ( D) (), AGGV (MS(” (v))>
f(8) = RD (x§” (), 2§ (¢), GRD ({x” w)lu € Vs}}), q)
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l 03 Relational Tree Mover’'s Distance (RTMD)

« Metric to quantify differences between subgraphs

« RTMD reflects the message-passing mechanism of SMPNNSs.
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l 03 Relational Computation Tree

* Modeling how SMPNNs process the subgraph structures

« Constructed by recursively adding neighboring relations and entities to leaf nodes

T8 Pw) TP TP (uy)
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l 03 Relational Tree Distance (RTD)

 Difference between the relational computation trees
* (1) The difference between the initial embedding vectors of their root entities
* (2) The difference between the sets of their subtree
* (3) Whether their query relations differ

= [INIT(Y)) — INIT@)MZ

RTD + L) = |1+ 1l ilD
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l 03 Relational Tree Mover’'s Distance (RTMD)

* RTMD
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| 03 Stability of SMPNNs

- Define stability C; as the reciprocal of the Lipchitz constant n w.r.t RTMD
« Bounded by the Lipschitz constants of each function of the SMPNNs.

Theorem 4.5 Given Gy, = Vi, R, Fir U Ti), Ging = (Ving, R, Fins U Ting), and an SMPNN f,, with L
layers, if the message, aggregation, update, global-readout, and readout function of f,, are Lipschitz
continuous, then f,, is Lipschitz continuous with the Lipschitz constant nr and the following holds:
( L+1

BER (k) = k — 1

1=1
Mf < L+1

(L+1) nnﬂ) 6(k) =0
=1

\

D _ ® O 4O O pO 4O 4O ozp® 4O O
n® = max (AQ); + dimax B Alpe B Bl ASaeAing |RIZB DAL CLL,,

|R|2Drd >
2+ maX(IVtrl, [ Vingl)
where1 <[ < L,and A4, B, C, D are the Lipschitz constants of the corresponding function.

25 4O pO)
IRI2B{D A D 1)

U(L+1) = max (Ard: Brd: CrdAgrdr
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l 04 Risk of Subgraph Reasoning Model

* y-margin risk
 Increases when a score for a positive triplet is less than or equal to y

* Increases when a score for a negative triplet is greater than or equal to —y

Empirical y-margin risk Expected y-margin risk
A 1 A
LG (fw: y) = m (hZ . 1 [yhrt ) fw (g(G' (h, r, t))) < y] LG (fw: ]/) = IEtht“’P(Y'g(Gr(h'rrt))) [LG (fW’ )/)]
,1t)e

« Expected Risk Discrepancy
« Eachrisk is measured on different KGs in the inductive setting

Expected Risk Discrepancy

D(P,A,y) =In <[EW~? lexp (A <LG“ (f v g) ™ L y))>D
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l 04 Generalization Bound of Subgraph Reasoning Models

 Using the PAC-Bayesian approach, compute the generalization bound of
subgraph reasoning models

« Key terms: KL divergence / Expected risk discrepancy

- Expected Risk Discrepancy

« Eachrisk is measured on different KGs in the inductive setting

Theorem 5.3 Given G, Gi,s, and a subgraph reasoning model with a subgraph extractor g and an SMPNN £, for any
prior distribution P and posterior distribution @ on the parameter space of f,, constructed by adding random noise w

tow such that P (max (gggtxlfw(g(ctr, &) = fw(9(Ger )], max|fiw(g(Gins, €)) = fur(9 Gins e))|)>, and y, 1 > 0, the

following holds with probability at least 1 — 6
2

A 1 4 A y
< h _ Z
L610¢firn 0) < Ly (s ¥) + 5 <2KL(Q|:P) +Ing+ oo +D (:P, A, 2) )

where D (SD, A, g) is the expected risk discrepancy between G and G;,, and KL(Q|P) is a KL divergence of @ from P.
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l 04 Upper Bound of Expected Risk Discrepancy

» To focus on the discrepancy between two KGs, derive the upper
bound of the expected risk discrepancy

* OTrrMmp (¥ (Tins, Tir) ): Optimal transport distance between the sets of subgraphs

« C¢: Stability(=inverse of Lipschitz constant) of the subgraph reasoning model

- Stability Cr is inversely proportional to the upper bound of the expected risk discrepancy

Theorem 5.5 Given G, Gi,s, and a subgraph reasoning model with a subgraph
extractor g and an SMPNN f,, with stability C¢, for any prior distribution 7 and
posterior distribution @ on the parameter space of f,,, and 4 > 0, the following holds:

| Tt | 3 1) N 20Trrmp (¥ (T, ﬂr)))

D(P,ALy)<A (max (0,
Y | Tin] yCrmax(|Tinel, [Ter])

#5 KAIST

“BDILab KAIST Big Data Intelligence Lab



l 05 Experiments

- Empirically validate our theoretical findings
« Demonstrate that RTMD is a valid metric for quantifying differences between subgraphs
« Demonstrate that SMPNNSs are Lipschitz continuous w.r.t. RTMD

« Show that a more stable model tends to exhibit better generalization capability

 Datasets

« Benchmark datasets for inductive KGC provided in GralL (ICML 2020)
« v3 of WN18RR / v1 of FB15K-237 / v2 of NELL-995

 Extract 2-hop subgraphs for each dataset
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l 05 Label Classification using RTMD

« Demonstrate that RTMD is a valid metric for quantifying differences between
subgraphs

« tSNE visualization: Distance between points is proportional to the RTMD.
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l 05 Comparing RTMD with Scores

« Demonstrate that SMPNNs are Lipschitz continuous w.r.t. RTMD

« Compare the score difference and the RTMD between subgraphs
« Scores are computed by GralL (ICML 2020)
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l 05 Comparing Stability with Generalization Errors

« Show that a more stable model tends to exhibit better generalization capability
« Design 48 different subgraph reasoning models by permuting the functions of SMPNNs

« Compute the empirical Lipschitz constant of each model

Correlation: -0.5759 Correlation: -0.5134 _Correlation: -0.4912
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l 06 Conclusion

 Design a general framework for subgraph reasoning models

 Derive their stability w.r.t the perturbations of the subgraph structures

* Introduce the RTMD, designed for subgraph reasoning models

« Use RTMD to compute the stability of subgraph reasoning models

» Theoretically analyze the subgraph reasoning models for inductive KGC

 Discuss the impact of the stability on their generalization capability

« Empirically validate that our theoretical findings hold on real-world KGs

« Compare the stability and generalization error of the subgraph reasoning models
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Thank You!
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