## Stability and Generalization Capability of Subgraph Reasoning Models for Inductive Knowledge Graph Completion

Minsung Hwang, Jaejun Lee, and Joyce Jiyoung Whang\* School of Computing, KAIST

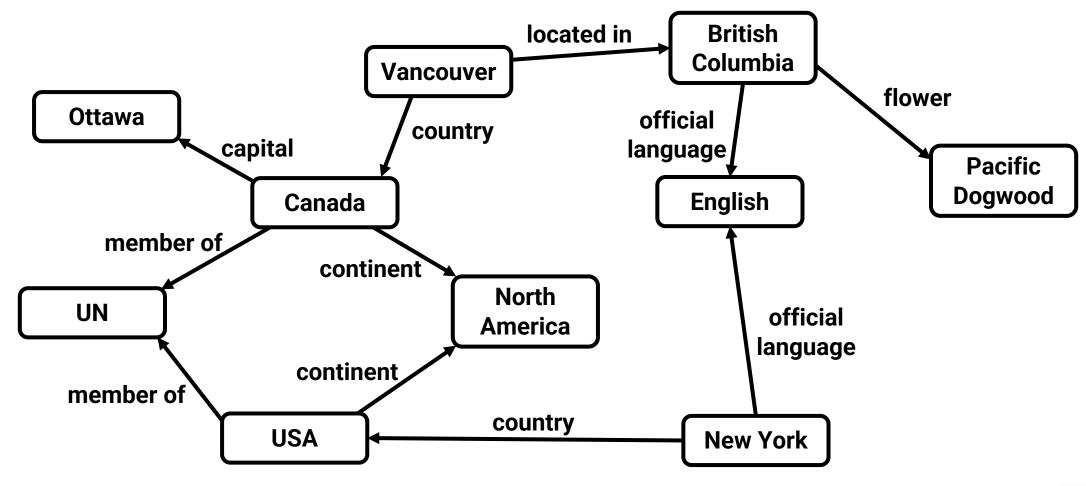
\* Corresponding Author

The 42nd International Conference on Machine Learning (ICML 2025)



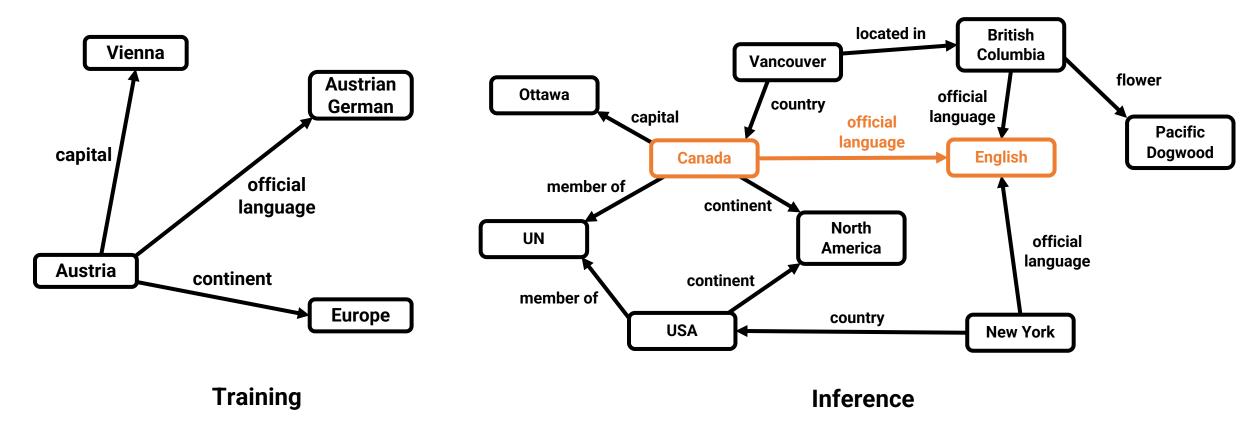
### **Knowledge Graph (KG)**

Represent real-world knowledge by modeling relationships between entities



### **Inductive Knowledge Graph Completion (KGC)**

- Predict missing triplets with knowledge graphs
- KG that appears during inference differs from the one used for training

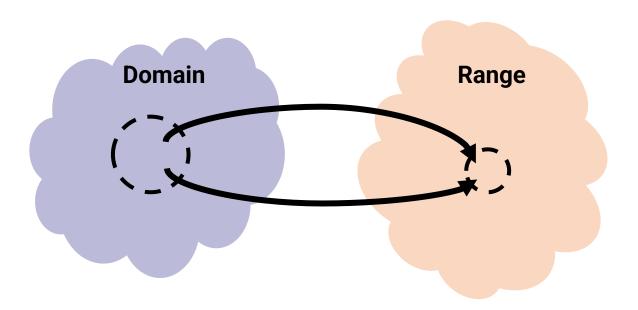




### **Theoretical Properties**

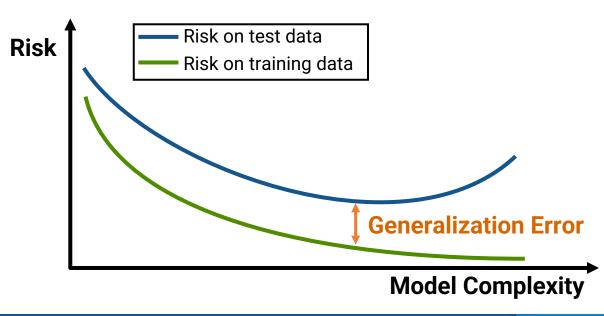
### **Stability**

- Consistency of the model's output
- Measured by Lipschitz constant



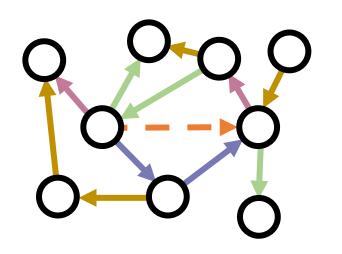
# **Generalization Capability**

- Performance discrepancy between training and test data
- Measured by generalization bound

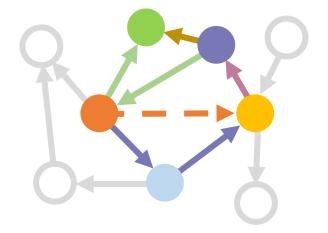


### General Framework for Subgraph Reasoning Model

- Determine the validity of a triplet using the subgraph extracted around the triplet
  - Extract a subgraph associated with a target triplet
  - Relabel the entities within the subgraph
  - Compute a score of the subgraph through message-passing









Final score  $f_w(S)$ 

**Original Knowledge Graph** 

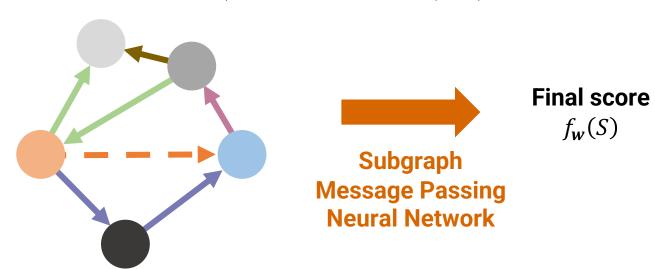
$$G = (\mathcal{V}, \mathcal{R}, \mathcal{F} \cup \mathcal{T})$$

Subgraph  $S = (\mathcal{V}_S, \mathcal{E}_S, \mathcal{R}, \text{INIT}_S, (h, q, t))$ 

### Subgraph Message Passing Neural Network (SMPNN)

Compute a score of the subgraph through message-passing

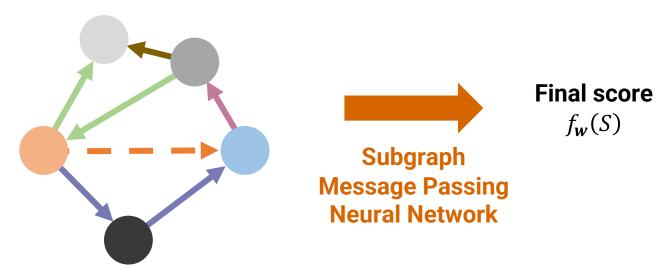
$$\begin{aligned} & \boldsymbol{x}_{S}^{(0)}(v) = \text{INIT}_{S} \\ & \mathcal{M}_{S}^{(l)}(v) = \left\{ \left\{ \text{MSG}^{(l)} \left( \boldsymbol{x}_{S}^{(l-1)}(u), \boldsymbol{x}_{S}^{(l-1)}(v), r, q \right) \mid (r, u) \in \mathcal{N}_{S}(v) \right\} \right\} \\ & \boldsymbol{x}_{S}^{(l)}(v) = \text{UPD}^{(l)} \left( \boldsymbol{x}_{S}^{(\theta(l))}(v), \text{AGG}^{(l)} \left( \mathcal{M}_{S}^{(l)}(v) \right) \right) \\ & f_{\boldsymbol{w}}(S) = \text{RD} \left( \boldsymbol{x}_{S}^{(L)}(h), \boldsymbol{x}_{S}^{(L)}(t), \text{GRD} \left( \left\{ \left\{ \boldsymbol{x}_{S}^{(L)}(u) \mid u \in \mathcal{V}_{S} \right\} \right\} \right), q \right) \end{aligned}$$



### Subgraph Message Passing Neural Network (SMPNN)

Initialize embedding vectors using embedding vectors from INIT<sub>S</sub>

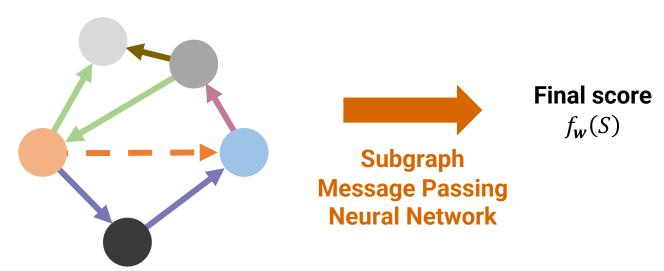
$$\begin{aligned} & \boldsymbol{x}_{S}^{(0)}(v) = \text{INIT}_{S} \\ & \mathcal{M}_{S}^{(l)}(v) = \{\{\text{MSG}^{(l)}\left(\boldsymbol{x}_{S}^{(l-1)}(u), \boldsymbol{x}_{S}^{(l-1)}(v), r, q\right) \mid (r, u) \in \mathcal{N}_{S}(v)\}\} \\ & \boldsymbol{x}_{S}^{(l)}(v) = \text{UPD}^{(l)}\left(\boldsymbol{x}_{S}^{(\theta(l))}(v), \text{AGG}^{(l)}\left(\mathcal{M}_{S}^{(l)}(v)\right)\right) \\ & f_{\boldsymbol{w}}(S) = \text{RD}\left(\boldsymbol{x}_{S}^{(L)}(h), \boldsymbol{x}_{S}^{(L)}(t), \text{GRD}\left(\{\{\boldsymbol{x}_{S}^{(L)}(u) | u \in \mathcal{V}_{S}\}\}\right), q\right) \end{aligned}$$



### Subgraph Message Passing Neural Network (SMPNN)

Compute messages of all neighbors for each node

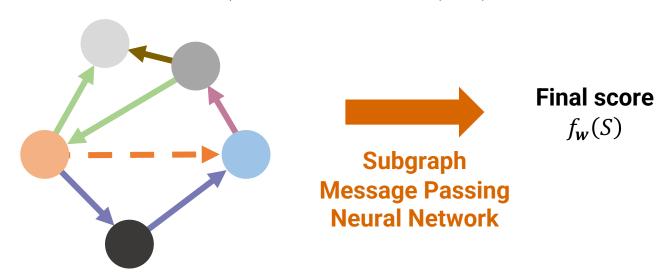
$$\begin{aligned} & \boldsymbol{x}_{S}^{(0)}(v) = \text{INIT}_{S} \\ & \mathcal{M}_{S}^{(l)}(v) = \{ \{ \text{MSG}^{(l)} \left( \boldsymbol{x}_{S}^{(l-1)}(u), \boldsymbol{x}_{S}^{(l-1)}(v), r, q \right) \mid (r, u) \in \mathcal{N}_{S}(v) \} \} \\ & \boldsymbol{x}_{S}^{(l)}(v) = \text{UPD}^{(l)} \left( \boldsymbol{x}_{S}^{(\theta(l))}(v), \text{AGG}^{(l)} \left( \mathcal{M}_{S}^{(l)}(v) \right) \right) \\ & f_{\boldsymbol{w}}(S) = \text{RD} \left( \boldsymbol{x}_{S}^{(L)}(h), \boldsymbol{x}_{S}^{(L)}(t), \text{GRD} \left( \{ \{ \boldsymbol{x}_{S}^{(L)}(u) | u \in \mathcal{V}_{S} \} \} \right), q \right) \end{aligned}$$



### Subgraph Message Passing Neural Network (SMPNN)

Update embedding vectors by aggregating messages of neighbors

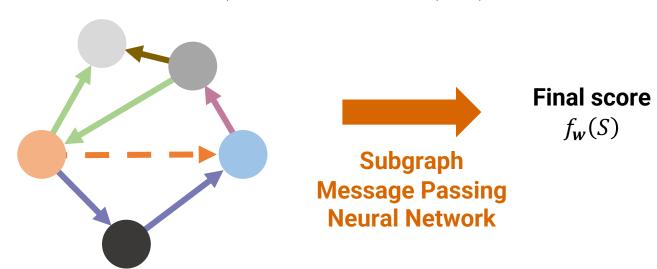
$$\begin{aligned} & x_{S}^{(0)}(v) = \text{INIT}_{S} \\ & \mathcal{M}_{S}^{(l)}(v) = \{\{\text{MSG}^{(l)}\left(x_{S}^{(l-1)}(u), x_{S}^{(l-1)}(v), r, q\right) \mid (r, u) \in \mathcal{N}_{S}(v)\}\}\} \\ & x_{S}^{(l)}(v) = \text{UPD}^{(l)}\left(x_{S}^{(\theta(l))}(v), \text{AGG}^{(l)}\left(\mathcal{M}_{S}^{(l)}(v)\right)\right) \\ & f_{w}(S) = \text{RD}\left(x_{S}^{(L)}(h), x_{S}^{(L)}(t), \text{GRD}\left(\{\{x_{S}^{(L)}(u) | u \in \mathcal{V}_{S}\}\}\}\right), q\right) \end{aligned}$$



### Subgraph Message Passing Neural Network (SMPNN)

Update embedding vectors by aggregating messages of neighbors

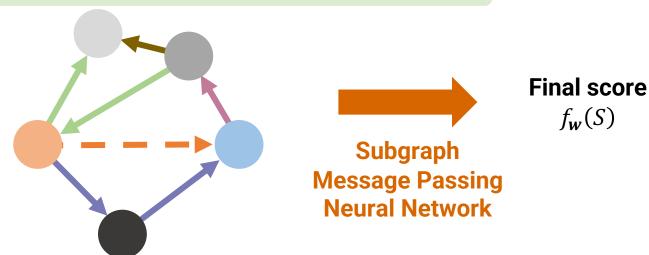
$$\begin{aligned} & x_{S}^{(0)}(v) = \text{INIT}_{S} \\ & \mathcal{M}_{S}^{(l)}(v) = \{\{\text{MSG}^{(l)}\left(x_{S}^{(l-1)}(u), x_{S}^{(l-1)}(v), r, q\right) \mid (r, u) \in \mathcal{N}_{S}(v)\}\}\} \\ & x_{S}^{(l)}(v) = \text{UPD}^{(l)}\left(x_{S}^{(\theta(l))}(v), \text{AGG}^{(l)}\left(\mathcal{M}_{S}^{(l)}(v)\right)\right) \\ & f_{w}(S) = \text{RD}\left(x_{S}^{(L)}(h), x_{S}^{(L)}(t), \text{GRD}\left(\{\{x_{S}^{(L)}(u) | u \in \mathcal{V}_{S}\}\}\}\right), q\right) \end{aligned}$$



### Subgraph Message Passing Neural Network (SMPNN)

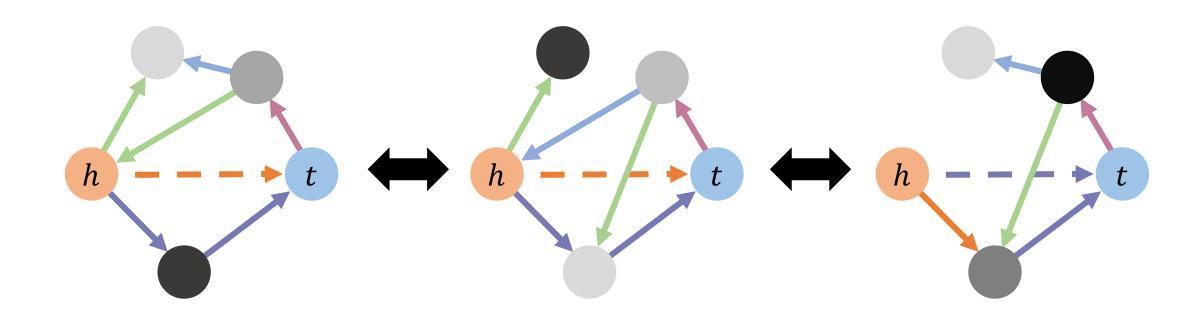
Compute the final score using readout and global-readout functions

$$\mathbf{x}_{S}^{(0)}(v) = \text{INIT}_{S} 
\mathcal{M}_{S}^{(l)}(v) = \{\{\text{MSG}^{(l)}\left(\mathbf{x}_{S}^{(l-1)}(u), \mathbf{x}_{S}^{(l-1)}(v), r, q\right) \mid (r, u) \in \mathcal{N}_{S}(v)\}\} 
\mathbf{x}_{S}^{(l)}(v) = \text{UPD}^{(l)}\left(\mathbf{x}_{S}^{(\theta(l))}(v), \text{AGG}^{(l)}\left(\mathcal{M}_{S}^{(l)}(v)\right)\right) 
f_{\mathbf{w}}(S) = \text{RD}\left(\mathbf{x}_{S}^{(L)}(h), \mathbf{x}_{S}^{(L)}(t), \text{GRD}\left(\{\{\mathbf{x}_{S}^{(L)}(u) | u \in \mathcal{V}_{S}\}\}\right), q\right)$$



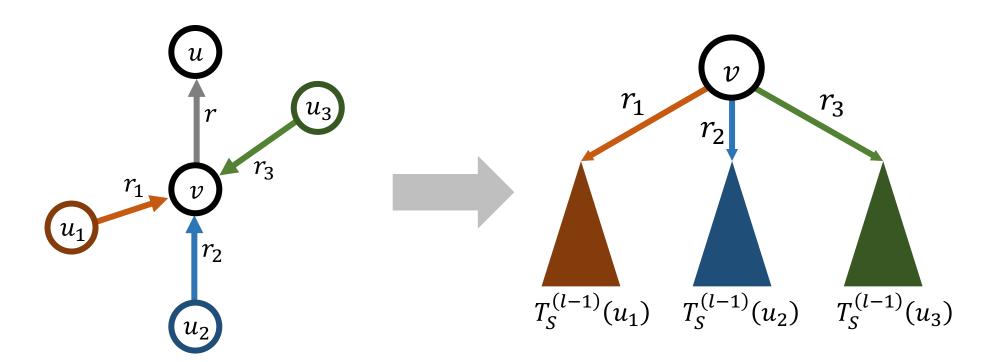
### Relational Tree Mover's Distance (RTMD)

- Metric to quantify differences between subgraphs
  - RTMD reflects the message-passing mechanism of SMPNNs.



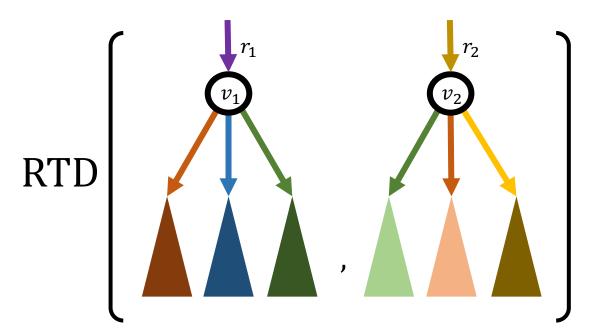
### **Relational Computation Tree**

- Modeling how SMPNNs process the subgraph structures
  - Constructed by recursively adding neighboring relations and entities to leaf nodes



### **Relational Tree Distance (RTD)**

- Difference between the relational computation trees
  - (1) The difference between the initial embedding vectors of their root entities
  - (2) The difference between the sets of their subtree
  - (3) Whether their query relations differ



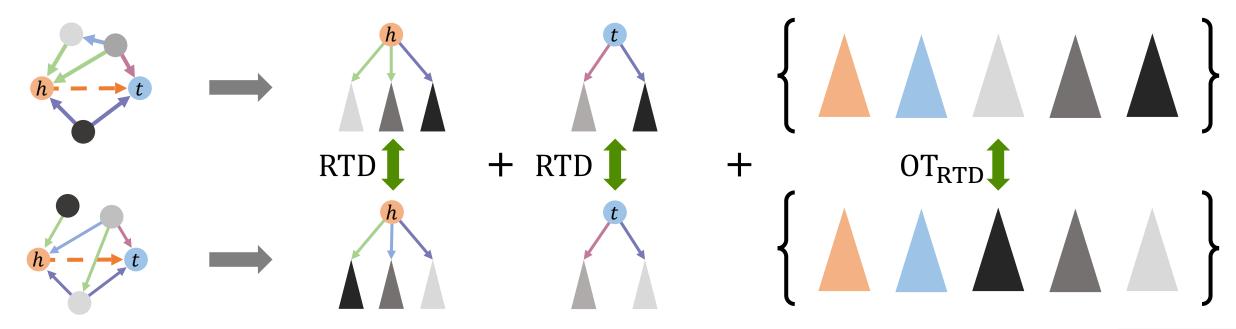
$$= \|\operatorname{INIT}(v_1) - \operatorname{INIT}(v_2)\|_2$$

$$+ \frac{1}{|\mathcal{R}|^2} (\mathbf{1}[\downarrow \neq \downarrow] + \mathbf{1}[\downarrow \neq \downarrow])$$

$$+ w(l) \operatorname{OT}_{RTD} \left\{ \left\{ \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\} \left\{ \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array} \right\} \left\{ \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \end{array} \right\} \left\{ \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow$$

### Relational Tree Mover's Distance (RTMD)

- RTMD between two subgraphs
  - (1) The RTD between the head entities of the query triplet
  - (2) The RTD between the tail entities of the query triplet
  - (3) The difference between the sets of relational computation trees



## **03** Stability of SMPNNs

- Define stability  $C_f$  as the reciprocal of the Lipchitz constant  $\eta$  w.r.t RTMD
  - Bounded by the Lipschitz constants of each function of the SMPNNs.

**Theorem 4.5** Given  $G_{tr} = (\mathcal{V}_{tr}, \mathcal{R}, \mathcal{F}_{tr} \cup \mathcal{T}_{tr})$ ,  $G_{inf} = (\mathcal{V}_{inf}, \mathcal{R}, \mathcal{F}_{inf} \cup \mathcal{T}_{inf})$ , and an SMPNN  $f_w$  with Llayers, if the message, aggregation, update, global-readout, and readout function of  $f_w$  are Lipschitz continuous, then  $f_w$  is Lipschitz continuous with the Lipschitz constant  $\eta_f$  and the following holds:

$$\eta_{f} \leq \begin{cases}
\prod_{l=1}^{L+1} \eta^{(l)} & \theta(k) = k - 1 \\
(L+1) \prod_{l=1}^{L+1} \eta^{(l)} & \theta(k) = 0
\end{cases}$$

$$\eta_{f} \leq \begin{cases} \prod_{l=1}^{L+1} \eta^{(l)} & \theta(k) = k-1 \\ (L+1) \prod_{l=1}^{L+1} \eta^{(l)} & \theta(k) = 0 \end{cases}$$

$$\eta^{(l)} = \max \left( A_{\text{upd}}^{(l)} + d_{\text{max}} B_{\text{upd}}^{(l)} A_{\text{agg}}^{(l)} B_{\text{msg}}^{(l)}, B_{\text{upd}}^{(l)} A_{\text{agg}}^{(l)} A_{\text{msg}}^{(l)}, |\mathcal{R}|^{2} B_{\text{upd}}^{(l)} A_{\text{agg}}^{(l)} C_{\text{msg}}^{(l)}, |\mathcal{R}|^{2} B_{\text{upd}}^{(l)} A_{\text{agg}}^{(l)} D_{\text{msg}}^{(l)}, 1 \right)$$

$$\eta^{(L+1)} = \max \left( A_{\text{rd}}, B_{\text{rd}}, C_{\text{rd}} A_{\text{grd}}, \frac{|\mathcal{R}|^{2} D_{\text{rd}}}{2 + \max(|\mathcal{V}_{\text{tr}}|, |\mathcal{V}_{\text{inf}}|)} \right)$$

where  $1 \le l \le L$ , and A, B, C, D are the Lipschitz constants of the corresponding function.

## Risk of Subgraph Reasoning Model

#### • $\gamma$ -margin risk

- Increases when a score for a positive triplet is less than or equal to  $\gamma$
- Increases when a score for a negative triplet is greater than or equal to  $-\gamma$

#### Empirical $\gamma$ -margin risk

$$\hat{\mathcal{L}}_{G}(f_{\mathbf{w}}, \gamma) = \frac{1}{|\mathcal{T}|} \sum_{(h,r,t) \in \mathcal{T}} \mathbf{1} \left[ y_{\text{hrt}} \cdot f_{\mathbf{w}} \left( g \left( G, (h,r,t) \right) \right) \leq \gamma \right] \quad \mathcal{L}_{G}(f_{\mathbf{w}}, \gamma) = \mathbb{E}_{y_{\text{hrt}} \sim \mathbb{P}\left( Y | g \left( G, (h,r,t) \right) \right)} \left[ \hat{\mathcal{L}}_{G}(f_{\mathbf{w}}, \gamma) \right]$$

#### Expected $\gamma$ -margin risk

$$\mathcal{L}_{G}(f_{\mathbf{w}}, \gamma) = \mathbb{E}_{y_{\mathrm{hrt}} \sim \mathbb{P}(Y|g(G,(h,r,t)))} [\hat{\mathcal{L}}_{G}(f_{\mathbf{w}}, \gamma)]$$

#### Expected Risk Discrepancy

Each risk is measured on different KGs in the inductive setting

#### **Expected Risk Discrepancy**

$$D(\mathcal{P}, \lambda, \gamma) = \ln \left( \mathbb{E}_{\mathbf{w} \sim \mathcal{P}} \left[ \exp \left( \lambda \left( \mathcal{L}_{G_{\text{tr}}} \left( f_{\mathbf{w}}, \frac{\gamma}{2} \right) - \mathcal{L}_{G_{\text{inf}}} (f_{\mathbf{w}}, \gamma) \right) \right) \right] \right)$$

### **Generalization Bound of Subgraph Reasoning Models**

- Using the PAC-Bayesian approach, compute the generalization bound of subgraph reasoning models
  - Key terms: KL divergence / Expected risk discrepancy
- Expected Risk Discrepancy
  - Each risk is measured on different KGs in the inductive setting

**Theorem 5.3** Given  $G_{tr}$ ,  $G_{inf}$ , and a subgraph reasoning model with a subgraph extractor g and an SMPNN  $f_w$ , for any prior distribution  $\mathcal{P}$  and posterior distribution  $\mathcal{Q}$  on the parameter space of  $f_w$  constructed by adding random noise  $\ddot{w}$ 

to w such that  $\mathbb{P}\left(\max\left(\max_{e\in\mathcal{T}_{\mathrm{tr}}}\left|f_{\widetilde{w}}\left(g(G_{\mathrm{tr}},e)\right)-f_{w}\left(g(G_{\mathrm{tr}},e)\right)\right|,\max_{e\in\mathcal{T}_{\mathrm{inf}}}\left|f_{\widetilde{w}}\left(g(G_{\mathrm{inf}},e)\right)-f_{w}\left(g(G_{\mathrm{inf}},e)\right)\right|\right)\right)$ , and  $\gamma,\lambda>0$ , the following holds with probability at least  $1-\delta$ 

$$\mathcal{L}_{G_{\inf}}(f_{\mathbf{w}},0) \leq \hat{\mathcal{L}}_{G_{\operatorname{tr}}}(f_{\mathbf{w}},\gamma) + \frac{1}{\lambda} \left( 2KL(\mathcal{Q}|\mathcal{P}) + \ln\frac{4}{\delta} + \frac{\lambda^{2}}{4|\mathcal{T}_{\operatorname{tr}}|} + D\left(\mathcal{P},\lambda,\frac{\gamma}{2}\right) \right)$$

where  $D\left(\mathcal{P},\lambda,\frac{\gamma}{2}\right)$  is the expected risk discrepancy between  $G_{\mathrm{tr}}$  and  $G_{\mathrm{inf}}$ , and  $\mathrm{KL}(\mathcal{Q}|\mathcal{P})$  is a KL divergence of  $\mathcal{Q}$  from  $\mathcal{P}$ .

### **Upper Bound of Expected Risk Discrepancy**

- To focus on the discrepancy between two KGs, derive the upper bound of the expected risk discrepancy
  - $OT_{RTMD}(\psi(\mathcal{T}_{inf},\mathcal{T}_{tr}))$ : Optimal transport distance between the sets of subgraphs
  - $C_f$ : Stability(=inverse of Lipschitz constant) of the subgraph reasoning model
    - Stability  $C_f$  is inversely proportional to the upper bound of the expected risk discrepancy

**Theorem 5.5** Given  $G_{tr}$ ,  $G_{inf}$ , and a subgraph reasoning model with a subgraph extractor g and an SMPNN  $f_w$  with stability  $C_f$ , for any prior distribution  $\mathcal{P}$  and posterior distribution  $\mathcal{Q}$  on the parameter space of  $f_w$ , and  $\lambda > 0$ , the following holds:

$$D(\mathcal{P}, \lambda, \gamma) \leq \lambda \left( \max \left( 0, \frac{|\mathcal{T}_{\text{tr}}|}{|\mathcal{T}_{\text{inf}}|} - 1 \right) + \frac{2 \text{OT}_{\text{RTMD}} \left( \psi(\mathcal{T}_{\text{inf}}, \mathcal{T}_{\text{tr}}) \right)}{\gamma \mathcal{C}_f \max(|\mathcal{T}_{\text{inf}}|, |\mathcal{T}_{\text{tr}}|)} \right)$$

### 05 Experiments

- Empirically validate our theoretical findings
  - Demonstrate that RTMD is a valid metric for quantifying differences between subgraphs
  - Demonstrate that SMPNNs are Lipschitz continuous w.r.t. RTMD
  - Show that a more stable model tends to exhibit better generalization capability

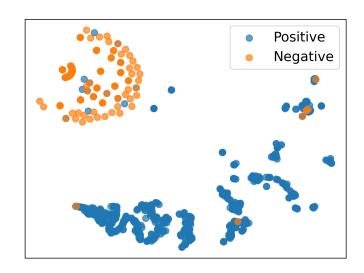
#### Datasets

- Benchmark datasets for inductive KGC provided in GraIL (ICML 2020)
- v3 of WN18RR / v1 of FB15K-237 / v2 of NELL-995
- Extract 2-hop subgraphs for each dataset

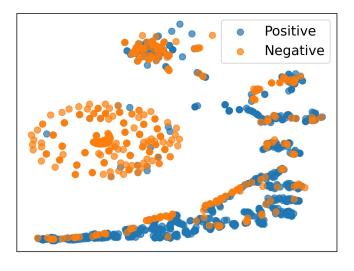


### **Label Classification using RTMD**

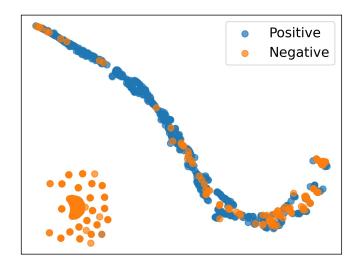
- Demonstrate that RTMD is a valid metric for quantifying differences between subgraphs
  - tSNE visualization: Distance between points is proportional to the RTMD.



WNv3
Classification accuracy: 0.8205



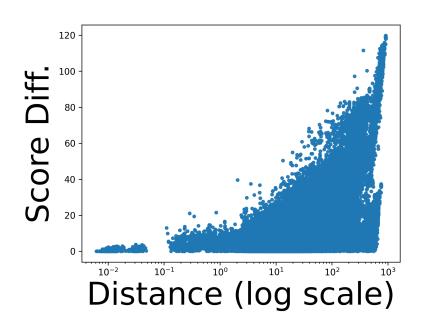
**FBv1** Classification accuracy: 0.7739

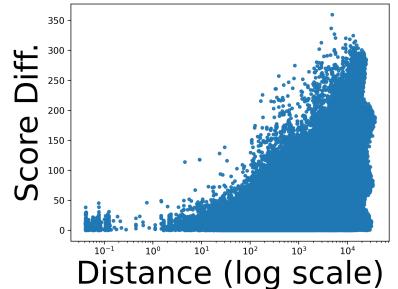


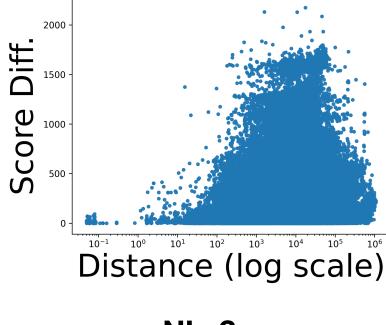
NLv2
Classification accuracy: 0.8654

### **Comparing RTMD with Scores**

- Demonstrate that SMPNNs are Lipschitz continuous w.r.t. RTMD
  - Compare the score difference and the RTMD between subgraphs
  - Scores are computed by GralL (ICML 2020)







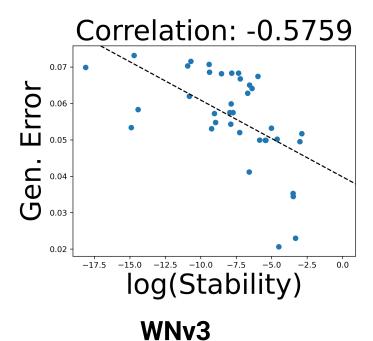
WNv3

FBv1

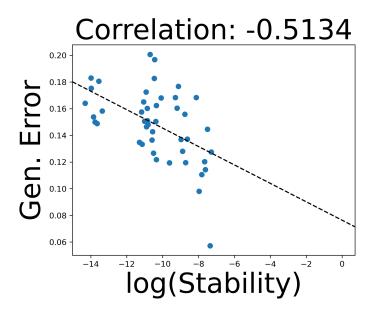
NLv2

### **Comparing Stability with Generalization Errors**

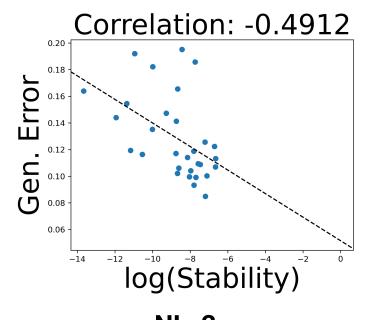
- Show that a more stable model tends to exhibit better generalization capability
  - Design 48 different subgraph reasoning models by permuting the functions of SMPNNs
  - Compute the empirical Lipschitz constant of each model



p-value: 0.00019



**FBv1** p-value: 0.00031



**NLv2** p-value: 0.00584

### 06 Conclusion

- Design a general framework for subgraph reasoning models
  - Derive their stability w.r.t the perturbations of the subgraph structures
- Introduce the RTMD, designed for subgraph reasoning models
  - Use RTMD to compute the stability of subgraph reasoning models
- Theoretically analyze the subgraph reasoning models for inductive KGC
  - Discuss the impact of the stability on their generalization capability
- Empirically validate that our theoretical findings hold on real-world KGs
  - Compare the stability and generalization error of the subgraph reasoning models



## Thank You!



**BDILab** 

#### You can find us at:

{hminsung, jjlee98, jjwhang}@kaist.ac.kr

https://bdi-lab.kaist.ac.kr

