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Knowledge Graph (KG)
• Represent real-world knowledge by modeling relationships between entities
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Inductive Knowledge Graph Completion (KGC)

• Predict missing triplets with knowledge graphs

• KG that appears during inference differs from the one used for training
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Theoretical Properties

• Consistency of the model’s output

• Measured by Lipschitz constant
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• Performance discrepancy between 
training and test data 

• Measured by generalization bound
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General Framework for Subgraph Reasoning Model
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• Determine the validity of a triplet using the subgraph extracted around the triplet
• Extract a subgraph associated with a target triplet

• Relabel the entities within the subgraph

• Compute a score of the subgraph through message-passing

Original Knowledge Graph 
𝐺 = 𝒱,ℛ, ℱ ∪ 𝒯

Subgraph 
𝑆 = 𝒱!, ℰ!, ℛ, INIT!, ℎ, 𝑞, 𝑡

Final score
𝑓𝒘 𝑆

Subgraph
Extractor

Subgraph
Message Passing
Neural Network



Subgraph Message Passing Neural Network (SMPNN)

• Compute a score of the subgraph through message-passing
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Subgraph Message Passing Neural Network (SMPNN)

• Initialize embedding vectors using embedding vectors from INIT?
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Subgraph Message Passing Neural Network (SMPNN)

• Compute messages of all neighbors for each node
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Subgraph Message Passing Neural Network (SMPNN)

• Update embedding vectors by aggregating messages of neighbors
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Subgraph Message Passing Neural Network (SMPNN)

• Update embedding vectors by aggregating messages of neighbors
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Subgraph Message Passing Neural Network (SMPNN)

• Compute the final score using readout and global-readout functions
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Relational Tree Mover’s Distance (RTMD)

• Metric to quantify differences between subgraphs
• RTMD reflects the message-passing mechanism of SMPNNs.
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Relational Computation Tree
• Modeling how SMPNNs process the subgraph structures

• Constructed by recursively adding neighboring relations and entities to leaf nodes
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Relational Tree Distance (RTD)
• Difference between the relational computation trees 

• (1) The difference between the initial embedding vectors of their root entities
• (2) The difference between the sets of their subtree
• (3) Whether their query relations differ
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Relational Tree Mover’s Distance (RTMD)

• RTMD between two subgraphs
• (1) The RTD between the head entities of the query triplet

• (2) The RTD between the tail entities of the query triplet
• (3) The difference between the sets of relational computation trees
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Stability of SMPNNs

• Define stability 𝐶! as the reciprocal of the Lipchitz constant 𝜂 w.r.t RTMD
• Bounded by the Lipschitz constants of each function of the SMPNNs.
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Theorem 4.5 Given 𝐺#$ = 𝒱#$, ℛ, ℱ#$ ∪ 𝒯#$ , 𝐺%&' = 𝒱%&', ℛ, ℱ%&' ∪ 𝒯%&' , and an SMPNN 𝑓𝒘 with 𝐿 
layers, if the message, aggregation, update, global-readout, and readout function of 𝑓𝒘 are Lipschitz 
continuous, then 𝑓𝒘 is Lipschitz continuous with the Lipschitz constant 𝜂( and the following holds:
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where 1 ≤ 𝑙 ≤ 𝐿, and 𝑨,𝑩, 𝑪, 𝑫 are the Lipschitz constants of the corresponding function.



Risk of Subgraph Reasoning Model
• 𝜸-margin risk

• Increases when a score for a positive triplet is less than or equal to 𝛾

• Increases when a score for a negative triplet is greater than or equal to −𝛾
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Empirical 𝜸-margin risk

Dℒ+ 𝑓𝐰, 𝛾 =
1
𝒯

H
-,/,0 ∈𝒯

𝟏 𝑦345 ⋅ 𝑓𝒘 𝑔 𝐺, ℎ, 𝑟, 𝑡 ≤ 𝛾

Expected 𝜸-margin risk

ℒ+ 𝑓𝐰, 𝛾 = 𝔼6#$%~ℙ 9|; +, -,/,0
Dℒ+ 𝑓𝐰, 𝛾

• Expected Risk Discrepancy
• Each risk is measured on different KGs in the inductive setting

Expected Risk Discrepancy

𝐷 𝒫, 𝜆, 𝛾 = ln 𝔼𝒘~𝒫 exp 𝜆 ℒ+%$ 𝑓𝐰,
𝛾
2 	− ℒ+&'( 𝑓𝐰, 𝛾



Generalization Bound of Subgraph Reasoning Models

• Using the PAC-Bayesian approach, compute the generalization bound of 
subgraph reasoning models
• Key terms: KL divergence / Expected risk discrepancy

• Expected Risk Discrepancy
• Each risk is measured on different KGs in the inductive setting
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Theorem 5.3 Given 𝐺#$, 𝐺%&', and a subgraph reasoning model with a subgraph extractor 𝑔 and an SMPNN 𝑓𝒘, for any 
prior distribution 𝒫 and posterior distribution 𝒬 on the parameter space of 𝑓𝒘 constructed by adding random noise 𝒘̈ 

to 𝒘 such that ℙ max max
9∈𝒯!"

𝑓<𝒘 𝑔 𝐺#$, 𝑒 − 𝑓𝒘 𝑔 𝐺#$, 𝑒 , max
9∈𝒯#$%

𝑓<𝒘 𝑔 𝐺%&', 𝑒 − 𝑓𝒘 𝑔 𝐺%&', 𝑒 , and 𝛾, 𝜆 > 0, the 

following holds with probability at least 1 − 𝛿

ℒ=#$% 𝑓𝒘, 0 ≤ ]ℒ=!" 𝑓𝒘, 𝛾 +
1
𝜆
2KL 𝒬|𝒫 + ln

4
𝛿
+

𝜆8

4 𝒯#$
+ 𝐷 𝒫, 𝜆,

𝛾
2
	

where 𝐷 𝒫, 𝜆, >
8
	is the expected risk discrepancy between 𝐺#$ and 𝐺%&', and KL 𝒬|𝒫  is a KL divergence of 𝒬 from 𝒫.



Upper Bound of Expected Risk Discrepancy

• To focus on the discrepancy between two KGs, derive the upper 
bound of the expected risk discrepancy
• OT56d7 𝜓 𝒯efg, 𝒯hi : Optimal transport distance between the sets of subgraphs

• 𝐶j: Stability(=inverse of Lipschitz constant) of the subgraph reasoning model
• Stability 𝐶= is inversely proportional to the upper bound of the expected risk discrepancy
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Theorem 5.5 Given 𝐺#$, 𝐺%&', and a subgraph reasoning model with a subgraph 
extractor 𝑔 and an SMPNN 𝑓𝒘 with stability 𝐶( , for any prior distribution 𝒫 and 
posterior distribution 𝒬 on the parameter space of 𝑓𝒘 , and 𝜆 > 0, the following holds:

𝐷 𝒫, 𝜆, 𝛾 ≤ 𝜆 max 0,
𝒯#$
𝒯%&'

− 1 +
2OT?@AB 𝜓 𝒯%&', 𝒯#$
𝛾𝐶(max 𝒯%&' , 𝒯#$



Experiments
• Empirically validate our theoretical findings

• Demonstrate that RTMD is a valid metric for quantifying differences between subgraphs

• Demonstrate that SMPNNs are Lipschitz continuous w.r.t. RTMD

• Show that a more stable model tends to exhibit better generalization capability

• Datasets
• Benchmark datasets for inductive KGC provided in GraIL (ICML 2020)
• v3 of WN18RR / v1 of FB15K-237 / v2 of NELL-995

• Extract 2-hop subgraphs for each dataset
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Label Classification using RTMD
• Demonstrate that RTMD is a valid metric for quantifying differences between 

subgraphs
• tSNE visualization: Distance between points is proportional to the RTMD.
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WNv3
Classification accuracy: 0.8205

FBv1
Classification accuracy: 0.7739

NLv2
Classification accuracy: 0.8654



Comparing RTMD with Scores
• Demonstrate that SMPNNs are Lipschitz continuous w.r.t. RTMD

• Compare the score difference and the RTMD between subgraphs

• Scores are computed by GraIL (ICML 2020)
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Comparing Stability with Generalization Errors

• Show that a more stable model tends to exhibit better generalization capability
• Design 48 different subgraph reasoning models by permuting the functions of SMPNNs

• Compute the empirical Lipschitz constant of each model
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WNv3
p-value: 0.00019

FBv1
p-value: 0.00031

NLv2
p-value: 0.00584



Conclusion

• Design a general framework for subgraph reasoning models
• Derive their stability w.r.t the perturbations of the subgraph structures

• Introduce the RTMD, designed for subgraph reasoning models

• Use RTMD to compute the stability of subgraph reasoning models

• Theoretically analyze the subgraph reasoning models for inductive KGC

• Discuss the impact of the stability on their generalization capability

• Empirically validate that our theoretical findings hold on real-world KGs
• Compare the stability and generalization error of the subgraph reasoning models
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You can find us at:
{hminsung, jjlee98, jjwhang}@kaist.ac.kr
https://bdi-lab.kaist.ac.kr
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